当前位置:   金科网 > 大数据 > 正文

大数据时代智能交通领域研究现状

引言:随着人工智能、大数据、物联网、云计算等新技术的快速发展,各类终端、电子化外场设备、中心业务应用都产生了海量的数据,并且渗透到了交通运输行业各个业务领域中,成为了重要的生产要素。大数据因此成为了社会各界关注的焦点,大数据时代已经来临。传统数据处理技术无法满足大规模数据的实时处理需求,不能挖掘数据蕴藏的重要价值。而人工智能、大数据等技术作为科技发展新引擎,也仍处于探索应用初期阶段,还没有实质性地实现智能交通的重大变革。因此,充分发挥人工智能、大数据等技术的优势,寻找与实际业务需求的结合点显得尤为重要。

在此背景下,本文首先从信息资源整合、数据智能分析决策、大数据全生命周期的新技术应用、信息主动推送、智能网联汽车等方面提出智能交通日益凸显的痛点及需求。其次总结智能视频分析、交通信号控制、智能交通平台应用及智能网联汽车等分业务领域的研究现状。再次围绕自然语言处理、计算机视觉、智能化交通信号控制、汽车电子标识、数据湖蓝光存储等新技术,分别从技术突破、业务应用两个方面阐述新技术突破在智能交通领域的应用。最后,提出了大数据时代新技术在智能交通领域研究方向的建议。

智能交通行业痛点及需求分析

1.从单一散乱到资源整合

大数据时代智能交通领域研究现状

单-散乱包括数据散乱、技术散乱、业务散乱及应用散乱。经过我国大规模的信息化建设,与交通运输相关的绝大多数部门均已建成自有信息化系统,并积累了大量数据。但目前太多数据信息只存在于单个部门的垂直业务和单一应用中,部门之间缺乏开放互通,造成数据资源条块化分割和信息碎片化,数据共享程度不高。为此,一方面,亟需建立数据开放标准,明确数据开放进程、范围边界、使用方式以及各部门对数据管理及共享的权利和义务;另一方面,亟需建立跨部门、跨行业、跨区域的信息资源整合平台,实现高效的交通运输资源配置,为交通管理、决策、规划与运营、服务提供更加有效的支撑。

2.从数据统计到智能辅助决策

交通大数据体量大、种类繁多,包括卡口、道路视频监控、电子警察、交通信号控制、交通诱导信息、车驾管、交通事故、停车场、运营车辆、车载视频、场站视频、公交线网、车辆定位等数据。然而面对如此海量、繁杂的数据,目前后台数据处理大多仍沿用传统的统计分析方法,或是通过单个维度数据的比对、累加、百分比计算,生成简单图示模型来辅助决策,或是基于有限维度数据的简单模型算法预测关键参数,上述数据处理结果离实现智能分析处理、提供智能辅助决策相差甚远。今后的数据分析期望实现:根据既有属性数据值,预测未知属性的数据值;基于大数据技术发现数据潜在模式,包括复杂的多维度数据关联性分析、将数据划分成若干有意义或有用簇的聚类分析以及从输人数据到各个标签映射的分类分析。

3.从聚焦数据处理环节到贯穿数据全生命周期

一个完备的大数据平台构建,包括数据采集、存储、处理以及展示等环节,主要挑战在于以下几方面。

(1) 数据类型的多样性,非结构化数据呈指数级增长:智能交通建设和运营过程中,既要处理结构化数据,同时还要处理视频监控、卡口电警产生的大量视频、图片等非结构化数据;传统的关系型数据库仅能分析处理确定的数据关系,而对于海量数据,特别是半结构化、非结构化数据无能为力。

(2) 数据采集的不确定性:数据在采集过程中容易存在缺失、错误、冗余等异常现象,而既有数据清洗算法均无法消除某些数据固有的不确定性。

(3) 数据存储能耗高、性能差:1)传统主存-磁盘存储架构无法满足大数据管理需求;2)大规模分布式数据库中传统的持久化策略、索引结构、查询执行、查询优化、数据恢复策略均无法发挥新型存储优势;3)大数据管理系统中的能耗成本逐年上升。

可见,大数据平台已由过去关注数据处理技术,逐步开始在数据管道验证、复杂数据碰撞、海量数据超算等环节产生新的需求,进而提高数据使用价值。

4.从信息被动搜索到信息主动推送

大多智能交通管控平台采用信息被动搜索模式,即:用户先发出请求,然后服务器响应请求,最后将用户请求的内容返回用户。该模式存在的问题是随着业务量的增加,用户无法及时获取准确有效的信息。因此,利用人工智能等技术从庞大数据资源中自动获取实用、准确、优质的信息,实现主动推送决策信息亟待实现。

5.汽车从传统交通工具到下一代移动智能终端

上一篇:图文:少数民族代表认真听会

下一篇:没有了