当前位置:   金科网 > 人工智能 > 正文

腾讯焚天之怒手游官网,手游关服了怎么办,ro手游盗贼二转流氓,2014手游市场分析报告,手游剑神传说结婚,手游充值商城的

机器学习适合做什么

机器学习当前在很多领域,都取得了相当巨大的进步。从应用领域来看,机器学习在“信息识别”、“数据预测”、“复杂控制”几个方面,展现出很大的能力。

比如“信息识别”领域,依赖于大数据的训练,现在的图形识别已经非常完善了,手写数字的识别仅仅是类似Hello World一类的简单应用;

“数据预测”领域百度对于世界杯的预测达到令人吃惊的100%准确率,将来这种技术在各种据别历史数据的预测应用上,将有长足的发展,比如广告的推荐系统、财经数据的决策系统等等;

“复杂控制”方面,自动驾驶的技术经历了十几年的研究,剩下的似乎只有识别硬件的成本问题了。

然而,以上这些技术,相当一部分来源于“大数据”,或者叫“监督学习”的训练,也就是说,实际上这些机器的智能是来源于人类积累在数据中的“智慧”。机器仅仅是在“模拟”人类的某种思考判断,而这种模拟采用的更多是类似“查询搜索”的方法。——不过说回来,人类的经验几千年来,都是记录在书本上,需要用另外一个大脑来学习,然后才加以运用;而机器学习跳过了人脑这个阶段,从经验直接到应用,确实是一个伟大的进度。可以增加一点想象的是,以后所有“需要经验”的事情,已经是可以用电脑来代替了,比如医生看病。不过那些需要“创造”或者“发现”的事情,比如艺术创作,理解和发现客观规律,还是需要人脑。所幸是机器学习在“无监督学习”领域,能协助人类更好的去理解和发现世界的特征,这个方面也是非常有用的,但现在似乎应用领域并不非常活跃(也许是我的了解还不够广泛)。

机器学习让游戏角色更加生动形象,带来不一样的游戏体验

[机器学习预测房价的例子]

AlphaGo在围棋领域战胜人类,给了我们很大的想想空间,我们会想:机器是否也能像人类一样理解游戏规则,从而玩游戏呢?我个人的理解,实际上现在还是不行的。如“监督学习”的模型下,机器只能通过大量的人类的“经验数据”,来模拟人类的游戏行为,但无法独立做出判断和思考;如果使用“深度学习”,确实会有一种“超越人类”的错觉,但是无法忽视的是,“深度学习”需要一种高度抽象,模拟游戏胜负规则的公式,来指导机器的自我对弈。在围棋、象棋这类已经发展了数千年的游戏领域,“子力计算”等游戏模式经验,已经能相当准确的描述这个游戏了。而对于其他的一些比较复杂的游戏,要高度抽象的用数学模型来概括一个游戏,还是需要人类大量的思考。这也是为什么深度学习在一些规则简单的游戏中,还能表现的比较好,而另外一些比较复杂的游戏上,就需要大量的人工干预才能稍微像样的原因。

机器学习让游戏角色更加生动形象,带来不一样的游戏体验

[AlphaGo是用了人类的游戏经验的]

所以我认为,机器学习在现阶段,最成熟的应用,是利用“监督学习”的方法,对于大量人类的“经验”大数据进行模拟思考的方面。这个方向处理用于“理解”客观世界,也可以“模拟”人类对于复杂环境的行为,这两者是几乎一样的。

游戏角色AI在开发上的困境

机器学习很容易让人联想到在游戏中的角色AI。一直以来游戏中NPC或怪物的AI问题都是一个游戏比较难解决的问题。比如游戏的角色行为过于单一,让玩家乏味;或者游戏角色容易因为BUG陷入一些卡死的境地。为什么游戏角色AI会有这些问题?大体不外乎几个原因:其一是描述一个完整的AI非常的繁琐,环境越复杂,AI逻辑流程越容易出现漏洞;其二是为了游戏角色AI的目标非常多样化,很多游戏角色并不是越“聪明厉害”越好,而应该是作为一个“演出系统”,来让玩家体验游戏世界的工具。

机器学习让游戏角色更加生动形象,带来不一样的游戏体验

[一套简单的游戏行为,就需要一个复杂的行为树]

现在比较流行的游戏角色AI开发方法,无外乎“状态机”和“行为树”两种,而这两种在数据结构上,是可以无损转换的,也就是说本质上是一样。这两个技术,都是为了帮游戏开发者,更准确、更完整的表述AI逻辑判断的数据结构。但是游戏本身的逻辑复杂度,还是要由程序员一段段的去理解,然后才能编写成程序。在另外一些游戏中,会用到一种叫“面向目标的路径规划”的技术,实际上是“状态机”的一种升级技术:利用A*等寻路算法,来自动生成“状态”之间的逻辑路径,而无需一开始就以人工输入的方式全部输入进去。这种技术因为是在运行时产生状态机图,所以表现出来的行为会更加丰富和准确,较少会陷入一些“没有事先预测到的状况”从而陷入逻辑卡住的情况。